porwsd W ey Toloangg
@r:ﬁéwﬁm Cifinnied

=S L S G

A Supercomputer for Neural Computatlon

Abstract— The requirement to train large
neural networks quickly has prompted the
design of a new massively parallel supercom-
puter using custom VLSI. This design fea-
tures 128 processing nodes, communicating
over a mesh network connected directly to
the processor chip. Studies show peak perfor-
mance in the range of 160 billion arithmetic
operations per second. This paper presents
the case for custom hardware that combines
neural network-specific features with a gen-
eral programmable machine architecture, and
briefly describes the design in progress.

I. INTRODUCTION

The design and construction of a supercomputer
specifically tailored for neural computation is a for-
midable task. We have undertaken this challenge
with the twin goals of advancing the science of com-
puter design while also producing a machine useful
for connectionist research. To achieve these goals,
we exploit several features of connectionist compu-
tation, as well as our own experience in systems
development, to build the Connectionist Network
Supercomputer {CNS-1). Recent work has shown
the practicality of connectionist systems for a range
of important problems, but it has also exposed the
need for computational resources far exceeding those
available to investigators in the field. The CNS-1 is
designed to meet those needs, and will support re-
search on problems orders of magnitude more com-
plex than is possible with current machines.

Qur earlier development of the Ring Array Pro-
cessor (RAP) [7] has played a crucial role in our
speech recognition research and is providing valu-
able insights for the design of the CNS-1 system.
Experiments using the RAP show that limited pre-
cision fixed point arithmetic suffices for almost all
algorithms of interest [2]. The high regularity of
many connectionist tasks allows them to be effi-
ciently mapped to distributed memory architectures
and then executed using many parallel pipelines.

The authors are with the International Computer Science In-
stitute and the University of California at Berkeley.

0950025 04

t mﬁ"rmmmw FERAERENE R
!

A
¥

Communication between processors is prlmarlly n- g

volved with the broadcast of activation values, elim-
inating the read latency and memory coherency is-
sues that plague many distributed parallelized ap-
plications. The design is further simplified by using
the CNS-1 as a single-user, single-task attached pro-
cessor, controlled by a host workstation.

Areas outside our work in connectionist speech
research are also influencing the CNS-1 design. Ap-
plications being explored include language process-
ing, auditory modeling, early and high level vision,
and knowledge representation. Some of these appli-
cations require soft-real-time capabilities to handle
live input such as speech or video. In other cases
we are interested in connecting to analog interface
systems being developed as part of our research [6].

Some of the most complex connectionist models
include sparsely connected and sparsely activated
networks. The semantic network is an extreme ex-
ample of a sparse network, although it may also
contain regions of dense connectivity. Existing con-
nectionist coprocessors, including our RAP system,
have not been designed or programmed to perform
well on such models. The CNS-1 incorporates fea-
tures to support sparse nets, and should encourage
formulation of problems and models not previously
attempted.

II. ARCHITECTURE DEVELOPMENT

Connectionist researchers have built computation
engines using combinations of digital and analog el-
ements for training as well as recognition tasks. The
CNS-1 is an all-digital design based on custem fast
VLSI chips interconnected to form a massively par-
allel processor. A fast processor, however, is not
sufficient to warrant the effort of developing a com-
plete system. If the usable performance of the sys-
tem on everyday tasks (not just toy benchmarks) is
not orders of magnitude greater than current work-
stations, then the project might be viewed as only
an academic exercise.

Engineering a parallel processor system for high
performance requires considering such issues as:

e Overall System Organization: number of inde-

DTIC QUALITY Iiv

pendent instruction streams, memory layout.
control strategy.

e Node Architecture: instruction efficiency, ap-
plication specific features, suitability to target
technologies.

e Memory: hierarchy, size, bandwidth, latency.

¢ Internode Communication: topology, link band-
width, protocol.

e I/0: locality, bandwidth, protection strategies,
€rror recovery.

e Testing: bringup, debugging access, reliability,
diagnostics.

e Supporting Hardware: power distribution, cool-
ing, mechanical support, packaging techniques.

e Software: involved with all of the above items
during the design phase, and then additionally
with the user interface during the operation
phase.

A pitfall common (but not unique) to parallel sys-
tems is Amdahl’s Law. Paraphrased for our pur-
poses, it states that the part of a task that could
not be parallelized will be the bottleneck to overall
performance. In parallel processor neurocomput-
ers, the speedup is generally provided by the use
of many fast circuits for the multiply-add opera-
tion. Certainly this is appropriate, since the com-
mon equations in use for learning and recall are
well described as matrix operations, requiring many
multiply-adds. The greatest possible speedup factor
for a task, then, is defined as:

Speedup < 1/ fraction not parallelized

In a 128 processor CNS-1, 1024 datapaths per-
form multiply-accumulates in parallel. If all the
datapaths have to stop while a single unit executes
0.1% of the total operations in non-parallelized code,
approximately one half of the elapsed time will be
taken up in this bottleneck. This fact of life per-
vades the design process as we seek a balance be-
tween types of instructions, internode communica-
tion costs, computation and I/0, and, perhaps most
importantly, ease of use for problems of interest.

The statistic most interesting to the neurocom-
puter researcher is problems solved per week rather
than connections per second. Inadequate software
means the desired algorithms will never be imple-
mented satisfactorily, and the hardware design effort
will be wasted.

The following subsections discuss these system de-
sign issues and outline the approach used in the
CNS-1.

A. Instruction Balance

Most connectionist algorithms run best on systems
that efficiently implement dot products and other

o

matrix-oriented multiply-add operations. These op-
erations generally do not require the range or reso-
lution needed for traditional scientific computation.
Single precision 32-bit floating point or even 16-
bit fixed point representations appear to be suffi-
cient. This paradigm of neurocomputers using par-
allel execution units with low or moderate precision
dot product capability can be seen in other designs
[4, 10].

However, to avoid the trap of Amdahl’s Law, at-
tention must be paid to those non-trivial manipu-
lations of the inputs and outputs that occur with
real algorithms. In our experience over the last
three years with the RAP, we found that useful ap-
plications required such functionality. For exam-
ple, inputs may need normalization, or preprocess-
ing to compute derivatives. Similarly, outputs may
need to be interpreted, normalized or even used in
some entirely non-connectionist step, such as dy-
namic programming. Standard methods for deal-
ing with these leftover chores include precomputing
and saving values, performing part of the task on
a different system, and making what’s left as par-
allel as possible. Even more difficult are situations
where conventional and connectionist computations
are intertwined.

One measure of the success of a parallel system,
as noted by Amdahl, is the ratio of time spent op-
erating in parallel to time operating as a uniproces-
sor. In our case, the non-parallel computation time,
tnp, for operations that are proportional to number
of neural network input and output units begins to
dominate the parallel execution time when

N -t,, > N*/P.

or
tp > N/P.

This relationship holds for a network implemented
on P processors with O(N) inputs and outputs,
O(N?) connections, and a single cycle multiply-add
operation.

The message of this equation, which we confirmed
during RAP performance testing, is that the paral-
lel computation units need sufficient generality to be
able to handle the non-dot-product operations. The
processor for the CNS-1 includes that generality in
the multiply-accumulate datapaths, providing sup-
port for parallel logical and arithmetic operations.
These datapaths also include certain connectionist-
specific features along with some support for emu-
lated floating point arithmetic. The cost of adding
this generality to the design is small relative to the

improvement in overall system performance.
i RAvau

Special

JUU I SRR S

R
andfor

B. Internode Communication

Just as fast neurocomputer designs are based on low
or moderate precision matrix arithmetic, efficient
parallelization of these algorithms relies on the lo-
cality of computation. Using locality as a starting
point, the designer trades off topology, bandwidth,
latency and protocol in allocating the hardware re-
sources. Quantifying these tradeoffs is complicated
by the boundaries between different levels of the
communication hierarchy.

One obvious hierarchy boundary useful for an-
alyzing a system of parallel processors is between
internode and intra-node communication. For the
case of an array of VLSI parallel processors, trans-
fers within a node may be over two orders of magni-
tude faster than the quickest internode message. To
estimate the internode performance requirement, we
can view a sub-net implemented on a single node in
the same way a full network was viewed in the pre-
vious section.

For a worst-case analysis, we assume that each
node has a complete representation of network state
(that is, all of the activations, though only a piece of
the weights). If a sub-net implemented on one node
has O(N?) connections, O(N) neural units and is
implemented on P processors within the node, then
the inter-chip communication time, t.,m, begins to
dominate the execution time when:

tecom > N/P.

As more processors are squeezed onto a chip, this
restriction gets worse, especially since I/O capabil-
ities are proportional to the perimeter of the chip,
while on-chip computational capabilities are propor-
tional to area. The restriction eases as more neural
units are implemented on a node, but this does noth-
ing to help overall system performance for a given
problem size.

In the CNS-1, the network bandwidth is designed
to comfortably meet this criteria at the node level
for expected values of N/P. We have included some
margin to allow for realistic traffic patterns in a
mesh-connected network.

C. Input/Output

It is reasonable to assume that target nmeurocom-
puter applications are dominated by computation
and communication within a tightly-coupled group
of processing elements. However, as in the previous
sections, the exceptions and bounds for such an as-
sumption must be examined. Interaction with the
host computer and disk may be orders of magnitude
slower than any of the characteristic times for on-
chip or between-chip operations. To give a worst-
case example, random access of a pattern input on a

disk can take tens of milliseconds, while arithmetic
using this data can take tens of nanoseconds and be
parallelized over hundred or thousands of process-
ing elements. General-purpose network or message-
handling routines that require operating system in-
teraction can also easily take milliseconds.

Using the same analysis as in previous sections,
it can be shown that since the I/O bandwidth is
O(N), the time for handling I/0, t;,, takes longer
than the parallel execution time when

assuming the I/O is not parallelized. As before,
larger values of P or smaller values of N make the
requirement more stringent.

Of course, this worst case analysis ignores the ad-
vantages of memory hierarchies in dealing with the
spatial and temporal locality in real problems [5].
For neurocomputing, these concepts come into play
for any net architecture where multiple patterns are
used as input to a net in a way that overlaps sequen-
tial net evaluations. Another strategy, if the local
memory is large enough, is to store the entire input
corpora locally and reuse it over multiple passes for
training. Finally, since random disk access causes
such a devastating performance penalty, algorithms
must be organized to access larger blocks whenever
possible. This enforces spatial locality on a disk
block basis, even though the per-variable reads may
be random within a block.

D. Software Requirements

The first concern for the neurocomputer researcher
is flexibility. Of course, raw speed is important too,
but if the machine cannot be coaxed into doing what
is required, the performance advantage is nullified.
The dual requirements for flexibility and speed tend
to be contradictory. To be flexible, the user needs
a general-purpose computing environment with a
familiar language and a set of tools for building
and debugging high level code. In order to obtain
the maximum performance, the user needs to study
hardware details and write intricate loops in assem-
bler. In our experience, we have found it essential
to support a wide range of users.

CNS-1 users will work within the general soft-
ware development environment writing in C, C4++
or Sather [9]. Using calls to hand coded library
routines written in assembly language, they will ac-
cess optimized functions such as matrix-vector mul-
tiplies. Since all of the code is run on the target
neurocomputer, there is no overhead for remote pro-
cedure calls between host and neurocomputing en-
gine. For the CNS-1 system, we have developed high
level neurocomputing simulation tools to allow the

sophisticated user to develop code without access to
the hardware.

I1II. CNS-1 SYSTEM OVERVIEW

The CNS-1 is a digital multiprocessor system de-
signed for the moderate precision fixed point op-
erations used extensively in connectionist network
calculations. We are building a custom VLSI dig-
ital processor employing an on-chip vector copro-
cessor unit tailored for neural network calculations
and controlled by a RISC scalar CPU. This RISC
processor, called Torrent-1, is compatible with the
industry standard MIPS-II instruction set architec-
ture.

One processor and associated commercial RAM
comprise a node, which is connected in a mesh topol-
ogy with other nodes to establish a MIMD (Multi-
ple Instruction, Multiple Data) array. Each node
contains a private memory space and communicates
with others through a simple message passing pro-
tocol. The CNS-1 will be built with 128 processing
nodes giving a maximum computational capacity of
160 billion integer operations per second and a to-
tal of 2GB of storage. The design is scalable to 512
processing nodes for up to 640 MegaOps and 8GB
of RAM. One edge of the communications mesh is
reserved for attaching various I/O devices, which
connect via a custom network adaptor chip, called
Hydrant. The CNS-1 operates as a compute server,
and one I/O port is reserved for connecting to a host
workstation.

A. Torrent Processor Chip

The CNS-1 processor chip, Torrent-1, includes a
MIPS-compliant CPU with a vector coprocessor, on-
chip caches supported by a fast external memory
interface, and a high performance network connec-
tion. The target clock rate for Torrent is 80MHz.
By including a complete RISC CPU (rather than
simply a specialized controller for the vector units),
routine scalar tasks can be handled local to the par-
allel units. Additionally, the choice of a standard
instruction set architecture means that widely avail-
able tools can be incorporated in our support soft-
ware.

The vector coprocessor on Torrent accelerates neu-
ral computation by executing up to 16 moderate
precision fixed point operations per cycle. The MIPS
CPU provides general scalar processing and sup-
ports the vector coprocessor through address gener-
ation, loop control and by providing scalar operands.

To supply the high memory bandwidth needed to
keep the vector unit busy, a vector memory pipeline
controller is included on-chip. Fast SRAM is used
to provide an aggregate memory bandwidth of over

1.2 GB/s with 16MB of SRAM per Torrent!. The
instruction fetch bandwidth is supported by an on-
chip instruction cache.

Torrent also includes a hardware router to handle
communications in the CNS-1 mesh. The commu-
nications path is tightly integrated with both the
scalar and vector processors, and supports a low
overhead transfer protocol based on active messages
[3]- The appeal of active messages for CNS-1 is that
a message arriving at its destination triggers execu-
tion of a local event handler, allowing very fast re-
sponse for short messages. The ability to customize
these handlers will be important for neural nets with
sparse interconnections and activations, ‘where the
balance between computation and communication
is particularly critical [8].

B. Hydrant 1/0 Chip

Communication between the networked Torrent pro-
cessors and the outside world takes place through a
custom network adapter chip, named Hydrant. At-
tached along one edge of the communication mesh,
Hydrants convert the high speed CNS-1 protocols to
a more general parallel interface. This interface is
then connected to a field programmable gate array
to allow customizing the signals for particular inter-
faces. The host and other devices will all connect to
CNS-1 through Hydrant nodes.

IV. SOFTWARE

Making the CNS-1 into a usable system requires a
major effort in software development. During the
design phase of the project, dozens of programs have
been modified or written from scratch to support the
VLSI effort.

Using the GNU suite of tools as a starting point, a
programmer’s environment has been constructed to
support running code on software simulators (now)
or the working hardware (later). A parallel effort is
underway to provide support for testing hardware
and debugging code.

A long term emphasis at ICSI and UCB has been
the development of connectionist simulators. One
simulator, CLONES, has been used successfully on
the RAP for training large backpropagation net-
works used in speech recognition research. Our new-
est generation simulator, BoB (for Boxes of Boxes),
builds on this experience and includes features added
specifically for the CNS-1.

At the highest level, BoB allows users to build
data flow maps using BOX and PORT classes. The
separation of computation and communication sim-
plifies the design step and allows lightweight ab-

LAn alternate implementation would be to use synchronous
DRAM, or SDRAM, with approximately the same performance.

stract classes to be defined. BoB is particularly tar-
geted for MIMD hardware, such as CNS-1, and will
efficiently support non-connectionist calculations.

The BoB library includes a set of classes that
support general connectionist and speech-oriented
databases which may be larger than a single disk
drive. Such a logical database object can hide the
fact that it consists of many files containing data for
different regions of the full database.

V. StATUS

The Torrent architecture is fully specified for the
computation units and partially specified for the
network controller. The first implementation of Tor-
rent, called TO, is in the final stages of design and
should be operational in the fall of 1994. TO does
not include an integral network controller, and is
targeted for single node implementations.

Most of the TO design will be reused for the CNS-1
Torrent processor, called T1. The network interface
design is underway, and will be incorporated in both
T1 and the Hydrant I/O chip.

Much of the software framework is in place and
work is underway to map applications to the CNS-1.

VI. CONCLUSIONS.

Experience with neurocomputer design and use has
shown us that many of the standard requirements
for good computer system design are still important,
even if we are simulating neural computation that is
significantly different from most common computer
applications. In particular, we must do a system-
oriented design, paying significant attention to the
execution of scalar and other non-connectionist op-
erations, both intra- and inter-chip communication
costs, I/O between the host/disk subsystems and
the neurocomputing engine, software, and diagnos-
tic capabilities. Careful attention to these details
can result in a system that provides sustained per-
formance within a small factor of the peak for a
wide range of relevant neurocomputing problems,
and flexible programming capabilities for users.

VII. ACKNOWLEDGEMENTS

In addition to the authors, the primary CNS-1 de-
sign team members are Tim Callahan, Bertrand
Irissou, Dave Johnson, Brian Kingsbury, Phil
Kohn, John Lazzaro, Thomas Schwair, and David
Stoutamire. The National Science Foundation
provided financial support through Grants MIP-
8922354 and MIP-9311980, and with Graduate Fel-
lowships. John Wawrzynek received support from
the National Science Foundation through the Pres-
idential Young Investigator (PYI) award, MIP-
8958568. Primary funding for the project is from
the ONR, URI N00014-92-J-1617, ARPA contract

N0001493-C0249, and the International Computer
Science Institute.

REFERENCES

[1] K. Asanovié, J. Beck, T. Callahan, J. Feldman,
B. Irissou, B. Kingsbury, P. Kohn, J. Lazzaro,
N. Morgan, D. Stoutamire, and J. Wawrzynek,
CNS-1 Architecture Specification - A Connec-
tionist Network Supercomputer, ICSI Techni-
cal Report, TR-93-021, April 1993.

[2] K. Asanovi¢ and N. Morgan, Experimental
Determination of Precision Requirements for
Back-Propagation Training of Artificial Neu-
ral Networks, In Proceedings 2nd International
Conference on Microelectronics for Neural Net-
works, Munich, October 1991.

[3] T. von Eicken, D. E. Culler, S. C. Goldstein and
K. E. Schauser, Active Messages: a Mechanism
for Integrated Communication and Computa-
tion, Proc. Tenth International Symposium on
Computer Architecture, May 1992.

[4] D. Hammerstrom, A VLSI architecture for
High-Performance, Low-Cost, On-Chip Learn-
ing, In Proc. International Joint Conference on
Neural Networks, pages 11-537-543, 1990.

[5] J. Hennessy and D. Patterson, Computer Ar-
chitecture: A Quantitative Approach, Morgan
Kaufmann, San Mateo, 1990.

[6] J. Lazzaro, J. Wawrzynek, M. Mahowald, M.
Sivilotti and D. Gillespie, Silicon Auditory Pro-
cessor as Computer Peripherals, IEEFE Journal
on Neural Networks, May 1993.

[7] N. Morgan, J. Beck, P. Kohn, J. Bilmes, E.
Allman and J. Beer, The Ring Array Processor
(RAP): A Multiprocessing Peripheral for Con-
nectionist Applications, Journal of Parallel and
Distributed Processing, Special Issue on Neural
Networks, v14, pp.248-259, 1992.

[8] S. Mueller and B. Gomes, A Performance
Analysis of CNS-1 on Sparse Connectionist
Networks, ICSI Technical Report, TR-94-009,
February 1994.

[9] S. Omohundro, The Sather Programming Lan-
guage, Dr. Dobb’s Journel, Volume 18, Issue
11, p. 42, October 1993.

[10] U. Ramacher, J. Beichter, W. Raab, J. Anlauf,
N. Bruls, M. Hachmann, and M. Wesseling, De-
sign of a 1st Generation Neurocomputer, In
VLSI Design of Neural Networks, Kluwer Aca-
demic, 1991.

